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Gentzen's ‘trick’

Beweisbarkeit und Unbeweisbarkeit
von Anfangsfillen der transfiniten Induktion
in der reinen Zahlentheorie®).

Von

Gerhard Gentzen in Géottingen.

Section 2.2, concerned with provability:

2. 2. Umjformung eimer TJ-Herleitung bis w, n eine TJ-Herlewtung bis
o, 1 = 0", (1 bezeichne eine natiirliche Zahl oder 0.)



General location of topic

The topic has to do with algebras, specifically initial algebras for
certain non-finitary functors such as

X—=1+X+(N—X) : Set— Set
P—{a:O|segaCP} : PO—-PO.

In the indexed version, O is an ordered set (of ordinal notations),
P O is a type of predicates or set-valued functions on O, and seg,
is a cofinal family of immediate predecessors of a.

A lens is a transformer of algebras for such functors. It implements
an arithmetic function at the level of ordinals, typically by means
of an operation at the level of types.



(Im)Predicative arithmetic

Suppose N = Mx(X — X) = X — X is a possible value of x.
N=Mx(FX — X)— X where F X =X+ 1.

Ox (572)
(Sucn)x (s, z)
m+n

2°n

Suppose not.

(m+m)x(s,2) =
2" mx(s,z) =

= s(nx(5.2)
ny (Suc, m)
= ny(m— m+ m)(Suc0)

nx (s, mx (s, z))

Tz nX_>X(f|—>ff,s)
[} 1 .
extractor carrier algebra



L,U,D

Ox = (L,2z) =z
(m+n)x = (s,z) — nx(s,mx(s,z)) (X)) —» X) = X
(2")x = a — Dx a(n(xy(Ux a))
where
L = (X :Set ) =X = X :Set
Ux = ((s,-):(X+1) = X) —(twice, s) (LX+1) = LX
Dx = ((-,z):ditto )—=(f:LX— fz)LX = X



Simulation of ¢ by (L, U, D)

The category is Set, the endofunctor F is something like
X =14+ X+ (N— X):Set — Set

and ¢ : uF — pF is something like (27), (w").
uF—— % L uF
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Indexed version

The category is Set®, where O is a transitive order. The
endofunctor F is something like:

(U: O —Set) —~ {a: O|segaC U}

where seg a is e.g. a cofinal family of immediate predecessors of a.
(Or the entire initial segment of O below a. )

The algebras of F are progressive predicates. An accessible
element is the least progressive predicate. Acc = uF.

The function ¢ : O — O is a symbolic function such as (27),
(w™), or a section of the 2-place Veblen function over one of these,
and & is a proof that the accessible part of O is closed under ¢, i.e.
dgAcc — Acc.

dgAcc ¢—> Acc
(It x) (Ux a)) Itx a
E!¢(L X) X

X a



Binary composition

Functions ¢, : Q — Q that have lenses are closed under
composition:

ItX a- ¢ - b
= DyXa-lt(LyX)(UyX a) -t
= DyXa-Dy(LsX)(UyXa)-It(Ly (L X)) (Uy(Ly X) (Us X a))

So
Loy = Ly-Ly
Upyp X = Uy (LX) - Us X
D¢.¢Xa = D¢Xa-(D¢(L¢X)-U¢X)a



Infinitary composition: the derivative

Suppose that for n: N, ¢, : Q — Q is normal (strictly increasing
and continuous) with lens (L, Un, Dy).

Let ¢ enumerate {a: Q|(Mn:N)a= ¢,a}. (Veblen's derivative.)
We can define (using transfinite types) a lens (L, U, D) for ¢.

Not at all tricky, but a bit too lengthy to explain here.



Lenses carry an algebra

Gentzen gave us a lens for (w ). We have an operation taking a
countable sequence of lenses to their derivative. So we have an
algebra for the functor

X = 1+ X+ (N— X)
The carrier is the (large) type

Lens = (X L:Set — Set)
[(X:Set) » (FX = X) = F(LX)— LX]
x [(X:Set) — (FX—=X) = LX = X]

The structure map on lenses combines
» zero case: the Gentzen lens.

» successor case: the (unary) derivative operation (infinitary
composition of a constant sequence).

» limit case: derivative of a sequence, infinitary composition.



‘Meta’ lenses

The notion of ‘lens’ can be relativised to a universe of sets (U, T).
We can use a ‘meta’-lens (in the next universe) for +w” to
generate a lens (in this universe) for ¢g3.

This is a manifestation of what weirdly resembles an ‘adjunction’

atw? Py
Mo ( A =T '_(255'7 A
o + w‘fﬁ] = o, ¢p7]
(+o?) 4 ¢

pervading sub-I'g proof theory.

(Admittedly, this is more of a vivid hallucination than a precise
conjecture.)



Summary, and confession

> It seems (to me) indubitable that there is a lot of algebraic
structure lurking beneath the surface of well-ordering proofs
(‘lower bounds’). The same can perhaps be said for ordinally
informative cut-elimination proofs (‘upper bounds’).

> | don't really know how to properly capture algebraic structure
in categorical terms. My hope is to interest someone here
more adept than | with categorical concepts and techniques.

Over to you.



Some details of infinitary composition

Given a sequence of lenses :

L, : Set — Set

Up: (X :Set) = (FX = X)— F(L, X) = L, X
Dp:(X:Set) = (FX —=>X)—= L, X=X

o= id Loe1 =L, L,
Up X = id Un1 X = Uy (Lo X) - Up X
DoX_=id  DpiXa=Dp,Xa (Dy(LyX) - UpX)a

Let L : Set — Set be X +— M,(L, X). Fix X : Set,a: F X — X.
Let [: (N — LX) — LX be & n— Upy(X, ) lim (M — &(m, n))).
Let J: LX — LX be & n+ D, (L, X)(Up X a)(€(n+1)).

Let |“: LX — LX be & — I(n—]"§).

Let 5: LX — LX be & =] (n— Un(X, a).succ(€EN)).

Let 3: LX be |* (n— Up(X, a).zero)-
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Let |“: LX — LX be & — I(n—]"§).

Let 5: LX — LX be & =] (n— Un(X, a).succ(€EN)).

Let 3: LX be |* (n— Up(X, a).zero)-

Then U(X, a) is (3,8,1), and D(X,a) =& — £0.



