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If you enjoyed your visit to Bern...

Why not come to “Gentzen Systems and Beyond ’11”?

Satellite workshop of TABLEAUX 2011, 4th July.
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Bureaucracy in syntax

To write down a proof in the sequent calculus, we have to make
arbitrary choices

Γ , A , B, C, D
∨

Γ , A ∨ B, C, D
∨

Γ , A ∨ B, C ∨ D

vs

Γ , A , B, C, D
∨

Γ , A , B, C ∨ D
∨

Γ , A ∨ B, C ∨ D

We would like a representation of proofs where such choices
are not necessary.
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Abstract proof objects

We look for objects which :
Represent equivalence classes of sequent proofs
under natural notions of identity of proofs
such that proof-checking takes at worst polynomial time.
with syntactic cut-elimination
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Proof nets

Girard’s proof nets [87] provide just such a framework for linear
logic.

Graph-based representation of proofs
Inductive translation from sequent proofs to nets...
identifying proofs differing by commuting conversions
Correctness is polynomial time.
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Robinson’s proof nets for classical propositional
logic[00]

A

Wk

A B

>

Ax

a ā

A ∧ B

∧

BA

A

Ctr

AA

A ∨ B

∨

BA

A proof structure is a graph built from the above elements, with
no incoming edges.
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Robinson’s proof nets for classical propositional
logic[00]

Example of a proof structure:

a ∧ b

∧

ba

ā ∨ b̄

∨

b̄ā
AxAx

The conclusion of a proof-structure is a sequent: here it’s
a ∧ b, ā ∨ b̄
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Each element above corresponds to a rule of the one-sided
sequent calculus
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Robinson’s proof nets for classical propositional
logic[00]

There is a translation from sequent proofs to structures

` Γ1, A ` Γ2, B

` Γ1, Γ2, A ∧ B
→ π1

AΓ1

π2

Γ2B

∧

A ∧ B

Call the translation of a sequent proof a net.
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Robinson’s proof nets for classical propositional
logic[00]

` A1, . . . An

` A1, . . . An, B
→ π

AnA1

Wk

An B
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Wk
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Unattached weakening

Why not define weakening like this instead?

` A1, . . . An

` A1, . . . An, B
→ π

AnA1

Wk ′

B

Causes problems with correctness
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

The problem with weakening

With Robinson’s weakening,
Decide if a structure comes from a sequent proof in
polynomial time
No canonical map from proofs to structures

Without weakening attachment
Canonical map from sequent proofs to stuctures
Correctness is NP-complete.
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Proposed solutions

Lamarche-Strassburger[05]: B/N-nets.
Hughes [06]: Combinatorial proofs.

Both approaches fail to capture equivalence classes of sequent
proofs.
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

The (smaller) problem with binary contraction

A

Ctr

AA

Ctr

AA

,

A

Ctr

A

Ctr

AA

A

and other problems concerning the interaction between
contractions and weakenings, or contractions and disjunctions.
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

From graphs to linked forests

A

Wk

A B

>

Ax

a ā

A ∧ B

∧

BA

A

Ctr

AA

A ∨ B

∨

BA

A proof net as a multiset F of typed trees with a set of “links”.
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A ∧ B

∧

BA

A

Ctr

AA

A ∨ B

∨

BA

A proof net as a multiset F of typed trees with a set of “links”.

11 / 23



The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

The e-annotated sequent calculus LKed

Ax>
` 1 : >

Ax
(x̄) : p̄, (x) : p

F , t : A , s : B
∨

F , t ∨ s : A ∨ B

F , t : A G, s : B
∧

F , (t ⊗ s) : A ∧ B

F
W

F , ∗ : A

F G
Mix

F , G

F , t : A ∧ B, s : A ∧ B
C∧

F , t + s : A ∧ B

F , s : p, t : p
Cp

F , s + t : p

F , s : p̄, t : p̄
Cp̄

F , s + t : p̄
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Completeness

Forgetting the annotating trees yields a sequent-calculus
complete for propositional classical logic:

Theorem
A sequent A1, . . . An of propositional logic is provable in LK if
and only if there are terms t1, . . . , tn with

LKed ` t1 : A1, . . . tn : An
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Example

Ax
(x̄) : ā, (x) : a

Ax
(ȳ) : ā, (y) : a

∧
(x̄) : ā, (ȳ) : ā, (x ⊗ y) : a ∧ a

Ax
(z̄) : ā, (z) : a

∧
(x̄) : ā, (ȳ) : ā, z̄ : ā, ((x ⊗ y)⊗ z) : (a ∧ a)∧ a

C
(x̄) : ā, (ȳ + z̄) : ā, ((x ⊗ y)⊗ z) : (a ∧ a)∧ a

C
(x̄ + ȳ + z̄) : ā, ((x ⊗ y)⊗ z) : (a ∧ a)∧ a
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Annotated sequents and Proof nets

The following annotated sequent represents a proof of Pierce’s
law

(((x̄)∨ ∗)⊗ (ȳ)) : (p̄ ∨ q)∧ p̄, (x + y) : p

The graph of this annotated sequent is

(p̄ ∨ q)∧ p̄

+

⊗
p̄

+

ȳ

∨
q̄

∗p̄

+

x̄

p

+

yx
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Sequentialization

Correctness based on usual proof-net correctness techniques.

Theorem
An annotated sequent F is correct if and only if ` F can be
derived in the annotated system.
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Weakening attachment

Correctness for annotated sequents is exponential-time,
because we need to find an attachment for the weakenings:

(p̄ ∨ q)∧ p̄

+

⊗
p̄

+

ȳ

∨
q̄

∗
p̄

+

x̄

p

+

yx
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Default attachments

If the subtree ∗ appears in a disjunction ∗∨ t or t ∨ ∗, such that
t , ∗, then it has a default attachment, namely t .

Checking correctness for forests in which every ∗ is
default-attached can be done in polynomial time.
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The problem
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From annotated sequents to expansion nets

The sequent calculus LK∗

Ax
a, ā

Ax>
>

Γ , A
∨0

Γ , A ∨ B

Γ , A , B
∨

Γ , A ∨ B

Γ , B
∨1

Γ , A ∨ B

Γ , a, a
C

Γ , a

Γ , ā, ā
C

Γ , ā

Γ , A ∧ B, A ∧ B
C

Γ , A ∧ B

Γ , A ∆, B
∧

Γ ,∆, A ∧ B

Γ ∆
Mix

Γ ,∆
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

E-annotating LK∗

Ax>
1 : >

Ax
(x̄) : p̄, (x) : p

F , t : A , s : B
∨

F , t ∨ s : A ∨ B

F , t : A
∨0

F , t ∨ ∗ : A ∨ B

F , s : B
∨1

F , ∗∨ s : A ∨ B

F , t : A ∧ B, s : A ∧ B
C∧

F , t + s : A ∧ B

F , s : p, t : p
Cp

F , s + t : p

F , s : p̄, t : p̄
Cp̄

F , s + t : p̄

F G
Mix

F , G

F , t : A G, s : B
∧

F , G, (t ⊗ s) : A ∧ B
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Expansion-nets

A is a theorem of propositional classical logic if and only if
LK∗ ` t : A for some t .

Given an arbitrary t , we can check if LK∗ ` t : A in polynomial
time.

Two derivations of t : A differ by rule permutations and
rearrangements of contractions.
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Discussion of Cut-elimination (if time permits)

Cut-reduction in LK∗ is non-local.

Cut-reduction in classical proof-nets is always non-local: one
deletes/duplicates subnets.
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The problem
Proof nets as annotated sequents

From annotated sequents to expansion nets

Conclusions, further work

Expansion nets represent equivalence classes of sequent
proofs, are canonical, and have polynomial-time correctness.

Further work:
Strong normalization/weakly normalizing subsystems
Equivalence of proofs containing cuts
First/Higher-order logic
Computational interpretation (Curry-Howard)
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