Expansion Nets Proof Nets for Classical Logic

Richard McKinley

University of Bern

ALCOP 2011

If you enjoyed your visit to Bern...

Why not come to "Gentzen Systems and Beyond '11"?

Satellite workshop of TABLEAUX 2011, 4th July.

Bureaucracy in syntax

To write down a proof in the sequent calculus, we have to make arbitrary choices

$$\frac{\Gamma, A, B, C, D}{\Gamma, A \vee B, C \vee D} \vee \qquad \text{vs} \qquad \frac{\Gamma, A, B, C, D}{\Gamma, A, B, C \vee D} \vee \\ \frac{\Gamma, A \vee B, C \vee D}{\Gamma, A \vee B, C \vee D} \vee$$

We would like a representation of proofs where such choices are not necessary.

Bureaucracy in syntax

To write down a proof in the sequent calculus, we have to make arbitrary choices

$$\frac{\Gamma, A, B, C, D}{\Gamma, A \vee B, C \vee D} \vee \qquad \text{vs} \qquad \frac{\Gamma, A, B, C, D}{\Gamma, A, B, C \vee D} \vee \\ \frac{\Gamma, A \vee B, C \vee D}{\Gamma, A \vee B, C \vee D} \vee$$

We would like a representation of proofs where such choices are not necessary.

Abstract proof objects

We look for objects which:

- Represent equivalence classes of sequent proofs
- under natural notions of identity of proofs
- such that proof-checking takes at worst polynomial time.
- with syntactic cut-elimination

Proof nets

Girard's proof nets [87] provide just such a framework for linear logic.

- Graph-based representation of proofs
- Inductive translation from sequent proofs to nets...
- identifying proofs differing by commuting conversions
- Correctness is polynomial time.

A proof structure is a graph built from the above elements, with no incoming edges.

Example of a proof structure:

The conclusion of a proof-structure is a sequent: here it's $a \wedge b$, $\bar{a} \vee \bar{b}$

Each element above corresponds to a rule of the one-sided sequent calculus

Each element above corresponds to a rule of the one-sided sequent calculus

There is a translation from sequent proofs to structures

Call the translation of a sequent proof a net.

Weakening creates problems with the translation

Weakening creates problems with the translation

$$\frac{\vdash A_1, \dots A_n}{\vdash A_1, \dots A_n, B} \rightarrow \qquad \boxed{\pi}$$

$$A_1 \quad A_n$$

$$A_n \quad B$$

$$\begin{array}{ccc}
 & \vdash A_1, \dots A_n \\
 & \vdash A_1, \dots A_n, B
\end{array}$$

$$\begin{array}{cccc}
 & \pi \\
 & A_1 & A_n \\
\hline
 & Wk \\
 & & \land \\
 & & A_1 & B
\end{array}$$

Unattached weakening

Why not define weakening like this instead?

Causes problems with correctness

Unattached weakening

Why not define weakening like this instead?

Causes problems with correctness

The problem with weakening

- With Robinson's weakening,
 - Decide if a structure comes from a sequent proof in polynomial time
 - No canonical map from proofs to structures
- Without weakening attachment
 - Canonical map from sequent proofs to stuctures
 - Correctness is NP-complete.

The problem with weakening

- With Robinson's weakening,
 - Decide if a structure comes from a sequent proof in polynomial time
 - No canonical map from proofs to structures
- Without weakening attachment
 - Canonical map from sequent proofs to stuctures
 - Correctness is NP-complete.

Proposed solutions

- Lamarche-Strassburger[05]: B/N-nets.
- Hughes [06]: Combinatorial proofs.

Both approaches fail to capture equivalence classes of sequent proofs.

The (smaller) problem with binary contraction

and other problems concerning the interaction between contractions and weakenings, or contractions and disjunctions.

From graphs to linked forests

A proof net as a multiset *F* of typed trees with a set of "links".

From graphs to linked forests

A proof net as a multiset *F* of typed trees with a set of "links".

From graphs to linked forests

A proof net as a multiset *F* of typed trees with a set of "links".

$$\frac{F, t: A, s: B}{F, t \lor s: A \lor B} \lor \frac{F, t: A \quad G, s: B}{F, (t \otimes s): A \land B} \land \frac{F}{F, *: A} W \qquad \frac{F \quad G}{F, G} Mix$$

$$\frac{F, t: A \wedge B, s: A \wedge B}{F, t+s: A \wedge B} C_{\wedge} \qquad \frac{F, s: p, t: p}{F, s+t: p} C_{p} \qquad \frac{F, s: \bar{p}, t: \bar{p}}{F, s+t: \bar{p}} C_{\bar{p}}$$

$$\frac{F, t: A, s: B}{F, t \lor s: A \lor B} \lor \qquad \frac{F, t: A \qquad G, s: B}{F, (t \otimes s): A \land B} \land
\frac{F}{F, *: A} W \qquad \frac{F}{F, G} Mix$$

$$\frac{F, t: A \land B, s: A \land B}{F, t + s: A \land B} C_{\land} \qquad \frac{F, s: p, t: p}{F, s + t: p} C_{p} \qquad \frac{F, s: \bar{p}, t: \bar{p}}{F, s + t: \bar{p}} C_{\bar{p}}$$

$$\frac{F, t: A, s: B}{F, t \lor s: A \lor B} \lor \qquad \frac{F, t: A \quad G, s: B}{F, (t \otimes s): A \land B} \land
\frac{F}{F, *: A} W \qquad \frac{F}{F, G} \text{Mix}$$

$$\frac{F, t: A \land B, s: A \land B}{F, t + s: A \land B} C_{\land} \qquad \frac{F, s: p, t: p}{F, s + t: p} C_{p} \qquad \frac{F, s: \bar{p}, t: \bar{p}}{F, s + t: \bar{p}} C_{\bar{p}}$$

$$\frac{F, t: A, s: B}{F, t \lor s: A \lor B} \lor \qquad \frac{F, t: A \quad G, s: B}{F, (t \otimes s): A \land B} \land$$

$$\frac{F}{F, *: A} W \qquad \frac{F}{F, G} Mix$$

$$\frac{F, t: A \land B, s: A \land B}{F, t + s: A \land B} C_{\land} \qquad \frac{F, s: p, t: p}{F, s + t: p} C_{p} \qquad \frac{F, s: \bar{p}, t: \bar{p}}{F, s + t: \bar{p}} C_{\bar{p}}$$

,

$$\frac{-}{F, t: A, s: B} \vee \frac{F, t: A, s: B}{F, t \vee s: A \vee B} \vee \frac{F, t: A \quad G, s: B}{F, (t \otimes s): A \wedge B} \wedge \frac{F}{F, s: A} W$$

$$\frac{F, t: A \land B, s: A \land B}{F, t+s: A \land B} C_{\land} \qquad \frac{F, s: p, t: p}{F, s+t: p} C_{p} \qquad \frac{F, s: \bar{p}, t: \bar{p}}{F, s+t: \bar{p}} C_{\bar{p}}$$

$$\frac{F, s: p, t: p}{F, s+t: p} C_p$$

$$\frac{F, s: \bar{p}, t: \bar{p}}{F, s+t: \bar{p}} C_{\bar{p}}$$

$$\frac{F, t: A, s: B}{F, t \lor s: A \lor B} \lor \frac{F, t: A \quad G, s: B}{F, (t \otimes s): A \land B} \land \frac{F}{F, s: A} W \qquad \frac{F \quad G}{F, G} Mix$$

$$\frac{F, t: A \land B, s: A \land B}{F, t+s: A \land B} C_{\land}$$

$$\frac{F, s: p, t: p}{F, s+t: p} C_p$$

$$\frac{F, s: \bar{p}, t: \bar{p}}{F, s+t: \bar{p}} C_{\bar{p}}$$

$$\frac{-}{F, t: A, s: B} \vee \frac{F, t: A, s: B}{F, t \vee s: A \vee B} \vee \frac{F, t: A \quad G, s: B}{F, (t \otimes s): A \wedge B} \wedge \frac{F}{F, s: A} W$$

$$\frac{F, t: A \land B, s: A \land B}{F, t+s: A \land B} C_{\land} \qquad \frac{F, s: p, t: p}{F, s+t: p} C_{p} \qquad \frac{F, s: \bar{p}, t: \bar{p}}{F, s+t: \bar{p}} C_{\bar{p}}$$

$$\frac{F, s: p, t: p}{F, s+t: p} C_p$$

$$\frac{F, s: \bar{p}, t: \bar{p}}{F, s+t: \bar{p}} C_{\bar{p}}$$

$$\frac{F, t: A, s: B}{F, t \lor s: A \lor B} \lor \qquad \frac{F, t: A \quad G, s: B}{F, (t \otimes s): A \land B} \land$$

$$\frac{F}{F, *: A} W \qquad \frac{F}{F, G} Mix$$

$$\frac{F, t: A \land B, s: A \land B}{F, t + s: A \land B} C_{\land} \qquad \frac{F, s: p, t: p}{F, s + t: p} C_{p} \qquad \frac{F, s: \bar{p}, t: \bar{p}}{F, s + t: \bar{p}} C_{\bar{p}}$$

Completeness

Forgetting the annotating trees yields a sequent-calculus complete for propositional classical logic:

Theorem

A sequent $A_1, \ldots A_n$ of propositional logic is provable in **LK** if and only if there are terms t_1, \ldots, t_n with

$$LK_{ed} \vdash t_1 : A_1, \dots t_n : A_n$$

Completeness

Forgetting the annotating trees yields a sequent-calculus complete for propositional classical logic:

Theorem

A sequent $A_1, ..., A_n$ of propositional logic is provable in **LK** if and only if there are terms $t_1, ..., t_n$ with

$$\mathbf{LK}_{ed} \vdash t_1 : A_1, \dots t_n : A_n$$

Example

$$\frac{\overline{(\bar{x}):\bar{a},\;(x):a}}{\frac{(\bar{x}):\bar{a},\;(\bar{y}):\bar{a},\;(x\otimes y):a\wedge a}{(\bar{y}):\bar{a},\;(z):a}} \wedge \frac{(\bar{z}):\bar{a},\;(z):a}{(\bar{z}):\bar{a},\;(z):a} \wedge \frac{(\bar{x}):\bar{a},\;(\bar{y}):\bar{a},\;\bar{z}:\bar{a},\;((x\otimes y)\otimes z):(a\wedge a)\wedge a}{(\bar{x}):\bar{a},\;(\bar{y}+\bar{z}):\bar{a},\;((x\otimes y)\otimes z):(a\wedge a)\wedge a}C$$

Annotated sequents and Proof nets

The following annotated sequent represents a proof of Pierce's law

$$(((\bar{x})\vee *)\otimes (\bar{y})):(\bar{p}\vee q)\wedge \bar{p},\quad (x+y):p$$

The graph of this annotated sequent is

Annotated sequents and Proof nets

The following annotated sequent represents a proof of Pierce's law

$$(((\bar{x}) \vee *) \otimes (\bar{y})) : (\bar{p} \vee q) \wedge \bar{p}, (x+y) : p$$

The graph of this annotated sequent is

Sequentialization

Correctness based on usual proof-net correctness techniques.

Theorem

An annotated sequent F is correct if and only if $\vdash F$ can be derived in the annotated system.

Weakening attachment

Correctness for annotated sequents is exponential-time, because we need to find an *attachment* for the weakenings:

Weakening attachment

Correctness for annotated sequents is exponential-time, because we need to find an *attachment* for the weakenings:

Weakening attachment

Correctness for annotated sequents is exponential-time, because we need to find an *attachment* for the weakenings:

Default attachments

If the subtree * appears in a disjunction $* \lor t$ or $t \lor *$, such that $t \neq *$, then it has a *default* attachment, namely t.

Checking correctness for forests in which every * is default-attached can be done in polynomial time.

Default attachments

If the subtree * appears in a disjunction $* \lor t$ or $t \lor *$, such that $t \neq *$, then it has a *default* attachment, namely t.

Checking correctness for forests in which every \ast is default-attached can be done in polynomial time.

The sequent calculus **LK***

$$\frac{\overline{a}, \overline{a}}{Ax} \xrightarrow{\top} Ax \overline{} Ax \overline{\phantom{A$$

E-annotating **LK***

$$\frac{F, t: A, s: B}{F, t \lor s: A \lor B} \lor \frac{F, t: A}{F, t \lor *: A \lor B} \lor_{0} \frac{F, s: B}{F, * \lor s: A \lor B} \lor_{1}$$

$$\frac{F, t: A \land B, s: A \land B}{F, t + s: A \land B} C_{\land} \frac{F, s: p, t: p}{F, s + t: p} C_{p} \frac{F, s: \bar{p}, t: \bar{p}}{F, s + t: \bar{p}} C_{\bar{p}}$$

$$\frac{F}{F, G} Mix \frac{F, t: A}{F, G, (t \otimes s): A \land B} \land$$

Expansion-nets

A is a theorem of propositional classical logic if and only if $\mathbf{LK}^* \vdash t : A$ for some t.

Given an arbitrary t, we can check if $LK^* \vdash t : A$ in polynomial time.

Two derivations of t: A differ by rule permutations and rearrangements of contractions.

Expansion-nets

A is a theorem of propositional classical logic if and only if $\mathbf{LK}^* \vdash t : A$ for some t.

Given an arbitrary t, we can check if $LK^* \vdash t : A$ in polynomial time.

Two derivations of t: A differ by rule permutations and rearrangements of contractions.

Expansion-nets

A is a theorem of propositional classical logic if and only if $\mathbf{LK}^* \vdash t : A$ for some t.

Given an arbitrary t, we can check if $LK^* \vdash t : A$ in polynomial time.

Two derivations of t: A differ by rule permutations and rearrangements of contractions.

Discussion of Cut-elimination (if time permits)

Cut-reduction in **LK*** is *non-local*.

Cut-reduction in classical proof-nets is *always* non-local: one deletes/duplicates subnets.

Discussion of Cut-elimination (if time permits)

Cut-reduction in **LK*** is *non-local*.

Cut-reduction in classical proof-nets is *always* non-local: one deletes/duplicates subnets.

Conclusions, further work

Expansion nets represent equivalence classes of sequent proofs, are canonical, and have polynomial-time correctness.

Further work:

- Strong normalization/weakly normalizing subsystems
- Equivalence of proofs containing cuts
- First/Higher-order logic
- Computational interpretation (Curry-Howard)